II Prize Winner - Mr. Hrudananda Bhoi's Solution

Given:

Arc ACB is a semicircle where C is the midpoint of the arc ACB. D is any point on the arc BC and CE is perpendicular to extended \overline{BD} at E. $\overline{EG} \perp \overline{AB}$ and extended \overline{EC} meets the arc AC at F. \overline{FB} and \overline{EG} meets at O. We have to prove that EO= $\frac{1}{2}AB$.

Construction:

Let X be the centre of the semicircle ie the midpoint of \overline{AB} . Join \overline{FX} , \overline{EX} , \overline{CX} , \overline{OX} . Extended \overline{OX} meets \overline{BE} at Z. \overline{FB} and \overline{XE} meets at Y.

Proof:

C is the midpoint of arc ACB and X is the centre.

$$\Rightarrow \overline{CX} \perp \overline{AB}$$
, But $\overline{EG} \perp \overline{AB}$ (Given)

$$\Rightarrow \overline{CX} \parallel \overline{EG}$$

Now,
$$m \angle BXC = 90^{\circ} \Rightarrow m \angle BFC = \frac{1}{2} m \angle BXC = 45^{\circ}$$

In the right angled $\triangle BEF \ m \angle BFC = 90^{\circ}, \ m \angle BFE = 45^{\circ}$

$$\Rightarrow m \angle EBF = 45^{\circ} \Rightarrow BE = EF$$

Now, BE=EF and FX=BX (radius)

 \Rightarrow BXFE is a kite and hence $\overline{XE} \perp \overline{BF}$

$$\Rightarrow \overline{BY} \perp \overline{XE}$$
, Further $\overline{EG} \perp \overline{BX}$

 \Rightarrow 0 is the orthocentre of $\triangle BEX$

$$\Rightarrow \overline{XOZ} \perp \overline{BE} \implies \overline{XZ} \parallel \overline{CE} \qquad (As \overline{CE} \perp \overline{BE} \& \overline{XZ} \perp \overline{BE})$$

 \Rightarrow CEOX is a parallelogram (As $\overline{CE} \parallel \overline{XO} \& \overline{CE} \parallel \overline{EO}$)

$$\Rightarrow CX = EO$$
, But CX = $\frac{1}{2}AB$ (CX radius & AB diameter)

$$\Rightarrow$$
EO = $\frac{1}{2} AB$ Proved